Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 314
1.
Food Microbiol ; 121: 104498, 2024 Aug.
Article En | MEDLINE | ID: mdl-38637069

Organic acids are widely used in foodstuffs to inhibit pathogen and spoiler growth. In this study, six organic acids (acetic, lactic, propionic, phenyllactic, caprylic, and lauric acid) and monolaurin were selected based on their physicochemical properties: their molecular structure (carbon chain length), their lipophilicity (logP), and their ability to dissociate in a liquid environment (pKa). The relation between these physicochemical properties and the inhibitory efficacy against B. weihenstephanensis KBAB4 growth was evaluated. After assessing the active form of these compounds against the strain (undissociated, dissociated or both forms), their MIC values were estimated in nutrient broth at pH 6.0 and 5.5 using two models (Lambert & Pearson, 2000; Luong, 1985). The use of two models highlighted the mode of action of an antibacterial compound in its environment, thanks to the additional estimation of the curve shape α or the Non-Inhibitory Concentration (NIC). The undissociated form of the tested acids is responsible for growth inhibition, except for lauric acid and monolaurin. Moreover, long-carbon chain acids have lower estimated MICs, compared to short-chain acids. Thus, the inhibitory efficacy of organic acids is strongly related to their carbon chain length and lipophilicity. Lipophilicity is the main mechanism of action of a membrane-active compound, it can be favored by long chain structure or high pKa in an acid environment like food.


Bacillus , Laurates , Monoglycerides , Monoglycerides/pharmacology , Monoglycerides/chemistry , Acids , Lauric Acids/pharmacology , Carbon
2.
Ultrason Sonochem ; 102: 106729, 2024 Jan.
Article En | MEDLINE | ID: mdl-38103368

In this study, we compared the quality of iron walnut oil (IWO) oleogels prepared with different oleogelators, including γ-oryzanol/ß-sitosterol (OZ-PS), γ-oryzanol/triglyceride (OZ-TC), monoglycerides (MGS), beeswax (BW), beeswax-monoglycerides (BW-MGS), and carnauba wax (CW). The physicochemical and component properties, rheological and textural parameters, macroscopic morphologies, and antioxidant capacities of the resulting oleogels were analyzed. In addition, their microscopic properties were analyzed using Fourier-transform infrared (FTIR), X-ray powder diffraction (XRD) spectroscopy, and polarized light microscopy (PLM). The results showed that the gel structures produced by different oleogelators did not change the fatty acid composition of IWO. In addition, the IWO oleogel prepared with OZ-PS had a more stable network structure, excellent hardness at 4℃ (1116.51 g), better antioxidant capacity (766.50 µmol TE/kg) and higher total phenolic content (14.98 mg/kg) than any other experimental IWO oleogels. Moreover, comprehensive ranking by principal component analysis of numerous characteristics showed that the OZ-PS oleogel (2.533) ranked first among the six oleogels studied. Therefore, the IWO oleogel prepared with OZ-PS is a promising product, and our results provide guidance for the preparation of IWO oleogels, such as to increase their applications in the food industry.


Juglans , Monoglycerides , Phenylpropionates , Monoglycerides/chemistry , Antioxidants , Organic Chemicals
3.
Food Chem ; 427: 136656, 2023 Nov 30.
Article En | MEDLINE | ID: mdl-37393637

The effect of different types of monoglycerides, including monopalmitin, capryl monoglyceride (GMB), and succinylated monoglyceride (GMSA) in combination with palm kernel stearin (PKS) and beeswax (BW), on the formation, crystal network structure, and partial coalescence properties of aerated emulsions (20 % w/w fat) was investigated. The stability of BW and PKS crystals with a 1 % concentration of GMSA and GMB, respectively, in the oil phase was lower than the other crystals. BW-GMSA and PKS-GMB crystals exhibited a lower crystallization rate, higher contact angles and no significant peak shift in the small-angle X-ray scattering results. The BW-GMSA and PKS-GMB emulsions had a lower nucleation rate in the bulk and a higher nucleation rate at the interface, resulting in a higher fraction of crystals adsorbed at the oil/water interface. This reduced the number of interfacial proteins and led to a high degree of partial coalescence and the formation of stable aerated networks.


Monoglycerides , Surface-Active Agents , Emulsions/chemistry , Monoglycerides/chemistry
4.
Food Chem ; 428: 136762, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37418884

Effect of stearic acid-based lipophilic emulsifiers (sorbitan monostearate (Span-60), sucrose ester S-170, and lactic acid esters of monoglycerides (LACTEM)) and oleic acid-based lipophilic emulsifiers (sorbitan monooleate (Span-80) and sucrose ester O-170) on the crystallization of fat blend and the stability of whipped cream were studied. Span-60 and S-170 possessed strong nucleation inducing ability and good emulsifying properties. Thus, tiny and uniform crystals were formed in fat blends, small and ordered fat globules were distributed in emulsions, and air bubbles were effectively wrapped in firmly foam structures. The crystallization of the fat blend and the stability of whipped cream were slightly modified by LACTEM due to its poor nucleation inducing ability and moderate emulsifying characteristic. Span-80 and O-170 had weak nucleation inducing ability and poor emulsifying properties, therefore, loose crystals were formed in fat blends and some big fat globules were separated in emulsions, thereby decreasing the stability of whipped creams.


Emulsifying Agents , Oleic Acid , Emulsions/chemistry , Crystallization , Emulsifying Agents/chemistry , Monoglycerides/chemistry , Esters
5.
Food Chem ; 412: 135501, 2023 Jun 30.
Article En | MEDLINE | ID: mdl-36716621

Acyl migration of 2-monoacylglycerols (2-MAGs) rich in DHA is a universal reaction occurring during storage and structural lipid synthesis, and affects their nutritional value. In this study, their acyl migration was investigated under different systems and temperatures. The enhanced temperature promoted acyl migration, leading to a 5.6-fold increase from 20 °C to 50 °C. The kinetic study indicated rate constants followed the order: hexane > solvent-free > dichloromethane > ethanol ≈ acetone ≈ acetonitrile > t-butanol, and positively correlated with log P of solvent. During acyl migration in ethanol, acetone, acetonitrile and t-butanol at 40 °C, DHA content in 2-MAGs was higher than in 1-MAGs, indicating slow acyl migration of DHA; while at 50 °C, the difference of DHA distribution was small, due to increasing acyl migration rate. The results suggest that acyl migration of different fatty acids can be regulated by changing conditions to enrich DHA at sn-2 position.


Acetone , Monoglycerides , Solvents/chemistry , Monoglycerides/chemistry , Temperature , tert-Butyl Alcohol , Ethanol/chemistry , Acetonitriles
6.
Food Chem ; 397: 133767, 2022 Dec 15.
Article En | MEDLINE | ID: mdl-35905623

In this study, soybean oil-based oleogels were prepared using soy-protein isolate (SPI) and glycerol monolaurate (GML) in an emulsion-template approach. The rheological, texture, microstructure, and oil-retention properties of the obtained oleogels were analyzed. Results showed that the soy oil-based oleogel prepared with 6 wt% GML exhibited high oil loss, low-hardness, and needle-like morphology compared to the soy-oil/SPI-based oleogel. On the other hand, soy oil-based /SPI-based oleogels structured by 3 or 6 wt% GML presented moderate thermal-stability and lowest oil loss than those prepared without GML. Furthermore, SPI-based oleogel containing 6 wt% GML showed highest free fatty acids release (62.07%) with significantly improved elastic modulus and apparent viscosity. Additionally, the obtained oleogels displayed the occurrence of van der Waals interactions and intermolecular hydrogen bonds, presenting enhanced thermal stability. These results contribute to a better understanding of oleogelation-based emulsions for formulating trans-free and low-saturated foodstuffs with desired physical and functional properties.


Monoglycerides , Soybean Oil , Emulsions/chemistry , Laurates , Monoglycerides/chemistry , Organic Chemicals , Soybean Oil/chemistry , Soybean Proteins/chemistry
7.
J Org Chem ; 87(15): 10523-10530, 2022 08 05.
Article En | MEDLINE | ID: mdl-35895907

Recent years have witnessed significant achievements in the field of organic chemistry, which have led to new drugs and the discovery of new and biologically interesting molecules. Herein, we describe a practical and efficient approach to the synthesis of enantiomerically pure and diverse lysobisphosphatidic acid analogues. The key feature of the synthesis is a one-pot, sequential phosphorylation of a protected sn-2-O-oleoyl glycerol or sn-3-O-oleoyl glycerol with 2-cyanoethyl N,N-diisopropylchlorophosphoramidite, followed by oxidation.


Glycerol , Monoglycerides , Lysophospholipids/chemistry , Monoglycerides/chemistry , Stereoisomerism
8.
Int J Biol Macromol ; 209(Pt A): 180-187, 2022 Jun 01.
Article En | MEDLINE | ID: mdl-35395279

Edible double network oleogels were prepared by hydroxypropyl methylcellulose (HPMC) and glyceryl monostearate (GMS) by the cryogel-templated method. Hot GMS soybean oil solutions were absorbed by HPMC cryogels, which were further homogenized and cooled to form oleogels containing both the HPMC network and GMS network. The crystal network constructed by GMS crystal clusters significantly enhanced the mechanical and rheological attributes of oleogels. Both the HPMC network and the GMS network were built up due to hydrogen bonds. According to the normalization analysis of FTIR and the deepening of the shift of the absorption peak, hydrogen bonds could also be formed between HPMC and GMS to connect the two independent networks. Double network oleogels were further used to fabricate cookies and cakes, assessed by the texture profile analysis. The combination of the HPMC network and GMS network in preparing oleogels will promote the application of oleogels as the fat replacer.


Monoglycerides , Organic Chemicals , Hypromellose Derivatives/chemistry , Monoglycerides/chemistry , Organic Chemicals/chemistry , Rheology
9.
J Colloid Interface Sci ; 619: 28-41, 2022 Aug.
Article En | MEDLINE | ID: mdl-35378476

The unique role of the spatial distribution of crystallizable emulsifiers in regulating the structure and properties of double emulsions has been gradually recognized. Herein, we utilized crystallizable monoglycerides of different carbon chain length (GMS/GMP/GML) to "structuring" the intermediate oil phase of double emulsions during a two-stage emulsification process followed by a cooling treatment. A ternary eigenvector (I, M, E) based on the numerical processing of polarization images was invented to quantitatively characterize the distribution pattern of monoglycerides. Crystallization kinetics analysis and dissipative particle dynamic simulation were then employed to reveal the regulatory mechanism for the site-specific interface distribution behavior. Results suggested that the distribution pattern of monoglycerides could be pricesly tuned as the internal interface-, external interface- or oil-phase dominated one in double emulsions. The surface activity as well as crystallization rates of monoglycerides dominated the interfacial distribution kinetics, and the cooling gradient along the interface region further regulated their interfacial distribution potential. Specificly, shorter crystallization time (t1/2) made GMP molecules rapidly solidified in oil phase, leading to the oil phase domninate crystallization (0, M, 0), whereas, slow crystallization rate rendered GML and GMS with sufficient time to diffuse to the interface, thus forming interfacial crystals ((I, 0, 0) and (0, 0, E)). The sensitivity of GML to cooling gradient along the interface region led to its preferential external interface distribution under cooling treatment. The presented study explored novel strategies that can be used in characterizing and manipulating the distribution pattern of crystallizable emulsifiers in multi-interface emulsion systems.


Monoglycerides , Water , Emulsifying Agents/chemistry , Emulsions/chemistry , Kinetics , Monoglycerides/chemistry , Water/chemistry
10.
J Agric Food Chem ; 70(16): 5115-5125, 2022 Apr 27.
Article En | MEDLINE | ID: mdl-35438487

Double emulsions (DEs) are promising delivery vehicles for the protective and programmed release of bioactive compounds. Herein, DEs with monoglycerides crystallized at the internal- or external interface or oil phase were fabricated. The results suggested that the crystallization site of monoglycerides exerts a significant role in retarding the structural degradation and lipid digestion of DEs by affecting the available contact area of lipase. At the initial stage of intestinal digestion, compared with noncrystalline DEs (82.1%, 3.7 min), the burst release of internal markers in the internal interface crystallized emulsions was decreased by 42.4% and the lag time of free fatty acid (FFA) release was delayed by 5.8 min in the external interface crystallized emulsions. The structural integrity and digestion kinetics of the external interface crystallized DEs were synchronized with the retention time of the interfacial crystals. Therefore, crystallizable emulsifiers exhibit unique and fine regulatory effects on the digestive properties of emulsions.


Emulsifying Agents , Monoglycerides , Digestion , Emulsifying Agents/chemistry , Emulsions/chemistry , Lipase/chemistry , Monoglycerides/chemistry , Particle Size
11.
Compr Rev Food Sci Food Saf ; 21(3): 2587-2614, 2022 05.
Article En | MEDLINE | ID: mdl-35279942

Monoglyceride (MG)-based oleogelation is an effective strategy to create soft matter structures with the functionality of fats, but with a nutritional profile similar to edible oils. MG oleogels are mainly studied to replace or reduce trans and saturated fats as well as to develop novel products with improved physical and organoleptic properties. The process consists of direct dispersion of MGs into the oil at temperatures above the melting point. This is followed by a cooling period in which the gelator network is formed, entrapping the oil in a crystalline structure. MG composition and concentration, oil type, process temperatures, stirring speed, shear rate during cooling, and storage time play a role in the kinetics of MG crystallization within an MG-oil system, which leads to the formation of lipid materials with different properties. A deep understanding of MG oleogelation processing parameters allows for the tailoring of oleogel properties to meet desirable characteristics as solid fat replacers. This review provides insight regarding manipulating physical process parameters to engineer structures with specific functionality. Furthermore, ultrasound technologies and optimization methodologies are discussed as tools for the production of oleogels with specific properties based on their potential use as well as the development of bi- and multi-gelators oleogels using MGs. Finally, the food applications in which MG oleogels have been tested are summarized in addition to the identified gaps that require further research.


Monoglycerides , Organic Chemicals , Crystallization , Monoglycerides/chemistry , Organic Chemicals/chemistry , Phase Transition
12.
Food Res Int ; 154: 110997, 2022 04.
Article En | MEDLINE | ID: mdl-35337588

The use of multicomponent oleogels combined with a physical process such as high-intensity ultrasound (HIU) has become an interesting alternative to overcome nutritional and technological issues in fat-based foods. This is because the combination can add technological properties without changing the total amount of gelators, improving sensory acceptance and clean label claim. In this context, the study aims to evaluate the structuration power and physical properties of oleogels formed by monoglycerides (MG), fully hydrogenated rapessed oil (FHRO), and lecithin (LE) in rapeseed oil, with and without HIU. All samples were analyzed according to their microstructure, melting behavior, rheology, texture, polymorphism, and oil binding capacity. In mono-structured oleogels, only MG was able to form gels that did not flow. Three synergic combinations that produced 99% oil binding capacity oleogels were found: MG: FHRO, FHRO:LE, and MG:FHRO:LE. These combinations showed improved physical properties like hardness, elastic modulus, and oil loss when sonicated, which was attributed to the induced secondary crystallization of the FHRO promoted by HIU.


Monoglycerides , Organic Chemicals , Crystallization , Hardness , Monoglycerides/chemistry , Organic Chemicals/chemistry
13.
Food Funct ; 12(20): 9763-9772, 2021 Oct 19.
Article En | MEDLINE | ID: mdl-34664580

Feruloyl glycerol (FG) is the hydrophilic ester of ferulic acid (FA), which has a high solubility in water and a strong ability to resist ultraviolet (UV) radiation. In this work, several solid acids were used as novel economical catalysts and FA was used as a cheap substrate for FG preparation. The effects of reaction variables on the esterification of FA with glycerol were investigated and optimized by response surface methodology (RSM). Results showed that a cheap solid acid cation exchange resin A-35 showed the best performance for esterification. The reaction conditions were optimized by RSM as follows: 15 : 1 (glycerol/FA) substrate molar ratio and 14% catalyst loading at 90 °C for 7 h. The maximum FG yield (98.50 ± 0.58%) was achieved under the optimized conditions. The activation energy of the esterification was 53.71 kJ mol-1. The results of UV absorbance showed that FG had good anti-UV activity and photostability, which can be used as a potential antioxidant and UV absorber in food and sunscreen products.


Antioxidants/chemistry , Coumaric Acids/chemistry , Monoglycerides/chemistry , Sunscreening Agents/chemistry , Esterification , Humans , Hydrophobic and Hydrophilic Interactions , Ultraviolet Rays
14.
Molecules ; 26(19)2021 Oct 01.
Article En | MEDLINE | ID: mdl-34641510

Bile acids (BAs) are a family of steroids synthesized from cholesterol in the liver. Among bile acids, ursodeoxycholic acid (UDCA) is the drug of choice for treating primary biliary cirrhosis and dissolving cholesterol gallstones. The clinical effectiveness of UDCA includes its choleretic activity, the capability to inhibit hydrophobic bile acid absorption by the intestine under cholestatic conditions, reducing cholangiocyte injury, stimulation of impaired biliary output, and inhibition of hepatocyte apoptosis. Despite its clinical effectiveness, UDCA is poorly soluble in the gastro-duodeno-jejunal contents, and pharmacological doses of UDCA are not readily soluble in the stomach and intestine, resulting in incomplete absorption. Indeed, the solubility of 20 mg/L greatly limits the bioavailability of UDCA. Since the bioavailability of drug products plays a critical role in the design of oral administration dosages, we investigated the enzymatic esterification of UDCA as a strategy of hydrophilization. Therefore, we decided to enzymatically synthesize a glyceric ester of UDCA bile acid to produce a more water-soluble molecule. The esterification reactions between UDCA and glycerol were performed with an immobilized lipase B from Candida antarctica (Novozym 435) in solvent-free and solvent-assisted systems. The characterization of the UDCA-monoglyceride, enzymatically synthesized, has been performed by 1H-NMR, 13C-NMR, COSY, HSQC, HMBC, IR, and MS spectroscopy.


Enzymes, Immobilized/chemistry , Fungal Proteins/chemistry , Monoglycerides/chemistry , Prodrugs/chemical synthesis , Ursodeoxycholic Acid/chemistry , Basidiomycota/enzymology , Catalysis , Chromatography, High Pressure Liquid , Enzyme Stability , Enzymes, Immobilized/metabolism , Esterification , Fungal Proteins/metabolism , Glycerol/chemistry , Magnetic Resonance Spectroscopy , Mass Spectrometry , Solubility , Solvents/chemistry , Temperature
15.
Environ Microbiol ; 23(11): 6993-7008, 2021 11.
Article En | MEDLINE | ID: mdl-34528360

The bacterial membrane is constantly remodelled in response to environmental conditions and the external supply of precursor molecules. Some bacteria are able to acquire exogenous lyso-phospholipids and convert them to the corresponding phospholipids. Here, we report that some soil-dwelling bacteria have alternative options to metabolize lyso-phosphatidylglycerol (L-PG). We find that the plant-pathogen Agrobacterium tumefaciens takes up this mono-acylated phospholipid and converts it to two distinct isoforms of the non-canonical lipid bis(monoacylglycero)phosphate (BMP). Chromatographic separation and quadrupole-time-of-flight MS/MS analysis revealed the presence of two possible BMP stereo configurations acylated at either of the free hydroxyl groups of the glycerol head group. BMP accumulated in the inner membrane and did not visibly alter cell morphology and growth behaviour. The plant-associated bacterium Sinorhizobium meliloti was also able to convert externally provided L-PG to BMP. Other bacteria like Pseudomonas fluorescens and Escherichia coli metabolized L-PG after cell disruption, suggesting that BMP production in the natural habitat relies both on dedicated uptake systems and on head-group acylation enzymes. Overall, our study adds two previously overlooked phospholipids to the repertoire of bacterial membrane lipids and provides evidence for the remarkable condition-responsive adaptation of bacterial membranes.


Sinorhizobium meliloti , Tandem Mass Spectrometry , Lysophospholipids , Monoglycerides/chemistry , Sinorhizobium meliloti/metabolism
16.
ACS Appl Mater Interfaces ; 13(34): 41021-41033, 2021 Sep 01.
Article En | MEDLINE | ID: mdl-34405995

The efficiency of filtration membranes is substantially lowered by bacterial attachments and potential fouling processes, which reduce their durability and lifecycle. The antibacterial and antifouling properties exhibited by the added materials play a substantial role in their application. We tested a material poly(vinylidene fluoride)-co-hexafluoropropylene (PDVF-co-HFP) based on an electrospun copolymer, where an agent was incorporated with a small amount of ester of glycerol consecutively with caprylic, capric, and lauric acids. Each of these three materials differing in the esters (1-monoacylglycerol, 1-MAG) used was prepared with three weighted concentrations of 1-MAG (1, 2, and 3 wt %). The presence of 1-MAG with an amphiphilic structure resulted in the hydrophilic character of the prepared materials that contributed to the filtration performance. The tested materials (membranes) were characterized with rheological, optical (scanning electron microscopy, SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and other methods to evaluate antibacterial and antifouling activities. The pure water flux was 6 times higher than that of the neat PVDF-co-HFP membrane when the added 1-MAG attained only 1 wt %. It was experimentally shown that the PVDF-co-HFP/1-MAG membrane with high wettability improved antibacterial activity and antifouling ability. This membrane is highly promising for water treatment due to the safety of antibacterial 1-MAG additives.


Anti-Bacterial Agents/pharmacology , Fluorocarbon Polymers/pharmacology , Monoglycerides/pharmacology , Nanofibers/chemistry , Polyvinyls/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Biofouling/prevention & control , Escherichia coli/drug effects , Escherichia coli/physiology , Filtration/instrumentation , Fluorocarbon Polymers/chemistry , Membranes, Artificial , Microbial Sensitivity Tests , Monoglycerides/chemistry , Polyvinyls/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Wettability
17.
Molecules ; 26(13)2021 Jun 30.
Article En | MEDLINE | ID: mdl-34209258

Tripalmitin-(PPP, 81.2%), 1,3-dipalmitoyl-2-oleoylglycerol-(POP, 64.4%), 1,2-dipalmitoyl-3-oleoylglycerol-(PPO, 86.5%), and 1,3-dioleoyl-2-palmitoylglycerol-(OPO, 50.2%)-rich lipids with different regiospecific positions of palmitic acid (P) were synthesized via acetone fractionation and lipase-catalyzed acidolysis, and their physicochemical and hydrolytic characteristics were compared. Triacylglycerols (TAGs) with higher content of P, wherein P was at the sn-1 (or 3) position, had higher melting points, crystallization temperatures, and packing densities of fat crystals compared to those with a lower content of P, and with P at the sn-2 position. The in vitro digestion degree calculated as released fatty acid (FA) (%) at 30, 60, and 120 min was in the following order: OPO-rich > PPO-rich > POP-rich lipids. At 120 min, in vitro digestion of the OPO-rich lipid released 92.6% of fatty acids, resulting in the highest digestibility, while 89.7% and 87.2% of fatty acids were released from the OPO-rich and PPO-rich lipids, respectively. Over the digestion period, the TAG and monoacylglycerol (MAG) contents decreased, while the diacylglycerol (DAG) content initially increased and then decreased, and the 1,2-DAG content exceeded the 1,3-DAG content. Therefore, the content and stereospecific position of P attached to a specific TAG affected the physicochemical and in vitro digestion characteristics of the lipids.


Lipase/chemistry , Palmitic Acid/chemistry , Triglycerides/chemistry , Digestion , Monoglycerides/chemistry , Monoglycerides/metabolism , Palmitic Acid/metabolism , Triglycerides/metabolism
18.
J Am Soc Mass Spectrom ; 32(8): 2227-2240, 2021 Aug 04.
Article En | MEDLINE | ID: mdl-34260857

Glucuronic acid containing diacylglycerols (3-(O-α-d-glucuronopyranosyl)-1,2-diacyl-sn-glycerols, GlcA-DAG) are glycolipids of plant membranes especially formed under phosphate-depletion conditions. An analytical approach for the structural characterization of GlcA-DAG in red ripe tomato (Solanum lycopersicum L.) extracts, based on reversed-phase liquid chromatography (RPLC) coupled with electrospray ionization (ESI) and tandem mass spectrometry (MS/MS) using a linear ion trap, is described in this paper. At least 14 GlcA-DAG (R1/R2) species, including four regioisomers, containing three predominant fatty acyl chains C16:0, C18:2, and C18:3, were identified for the first time. Moreover, 29 GlcA-DAG acylated on the glucuronosyl ring (acyl-R3 GlcA-DAG) were discovered, alongside 15 acylated lyso-forms, i.e., acylated 3-(O-α-d-glucuronosyl)monoacylglycerols, abbreviated as acyl-R3 GlcA-MAG (R1/0) or (0/R2). Although many of these acylated lyso-forms were isomeric with GlcA-DAG (i.e., acyl chains with equivalent sum composition), they were successfully separated by reversed-phase liquid chromatography (RPLC) using a solid-core C18 column packed with 2.6 µm particle size. Tandem MS (and eventually MS3) data obtained from sodium adducts ([M + Na]+) and deprotonated molecules ([M - H]-) were fundamental to detect diagnostic product ions related to the glucuronosyl ring and then determine the identity of all investigated glycolipids, especially to recognize the acyl chain linked to the ring. A classification of GlcA-MAG, GlcA-DAG, and acylated GlcA-DAG and GlcA-MAG was generated by an in house-built database. The discovery of acylated derivatives emphasized the already surprising heterogeneity of glucuronic acid-containing mono- and diacylglycerols in tomato plants, stimulating interesting questions on the role played by these glycolipids.


Chromatography, Reverse-Phase/methods , Glycolipids/chemistry , Solanum lycopersicum/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Acylation , Food Analysis/methods , Glycolipids/analysis , Monoglycerides/analysis , Monoglycerides/chemistry , Plant Extracts/analysis , Plant Extracts/chemistry
19.
J Oleo Sci ; 70(8): 1059-1068, 2021 Aug 05.
Article En | MEDLINE | ID: mdl-34248093

Vitamin C (VC)-loaded oleogel (VCOG) with corn oil and monoglyceride stearate was used to replace lipid phase of margarine completely. The oxidative stability of VCOG was evaluated at 60±1°C in a lightproof oven for 18 days and the result showed that VCOG peroxide (> 6 days) and p-anisidine value (> 4 days) was significantly lower than that of bulk oil and VC-free oleogel (p < 0.05). Then, the margarine containing 79.70% VCOG (VCOGM) was in comparison with four commercial butter in sensory and physical characteristic. Results showed that firmness, solid fat content and trans fatty acid of VCOGM were in the lowest values while unsaturated fatty acid and adhesiveness of VCOGM was in the highest values. Furthermore, VCOGM presented the similar springiness, cohesiveness, gumminess, score appearance, texture, taste and overall impression to some/all commercial butters selected in this research (p > 0.05). These results implied that VC-loaded oleogel was an excellent alternative of lipid phase in margarine which confirmed by 55% "definitely buy" and 25% "try once-then decide".


Ascorbic Acid/chemistry , Corn Oil/chemistry , Fatty Acids, Unsaturated/chemistry , Margarine , Monoglycerides/chemistry , Stearates/chemistry , Butter , Consumer Behavior , Fatty Acids, Unsaturated/analysis , Humans , Organic Chemicals/chemistry , Oxidation-Reduction , Taste , Triglycerides/analysis , Triglycerides/chemistry
20.
Molecules ; 26(11)2021 May 30.
Article En | MEDLINE | ID: mdl-34070869

Monoacylglycerol lipase (MAGL) is a key enzyme in the human endocannabinoid system. It is also the main enzyme responsible for the conversion of 2-arachidonoyl glycerol (2-AG) to arachidonic acid (AA), a precursor of prostaglandin synthesis. The inhibition of MAGL activity would be beneficial for the treatment of a wide range of diseases, such as inflammation, neurodegeneration, metabolic disorders and cancer. Here, the author reports the pharmacological evaluation of new disulfiram derivatives as potent inhibitors of MAGL. These analogues displayed high inhibition selectivity over fatty acid amide hydrolase (FAAH), another endocannabinoid-hydrolyzing enzyme. In particular, compound 2i inhibited MAGL in the low micromolar range. However, it did not show any inhibitory activity against FAAH.


Disulfiram/pharmacology , Monoacylglycerol Lipases/antagonists & inhibitors , Monoacylglycerol Lipases/chemistry , Amidohydrolases/chemistry , Arachidonic Acids/chemistry , Carbamates/pharmacology , Disulfiram/analogs & derivatives , Endocannabinoids/chemistry , Endocannabinoids/metabolism , Enzyme Inhibitors/pharmacology , Glycerides/chemistry , Humans , Hydrolysis , Monoglycerides/chemistry , Structure-Activity Relationship
...